President’s Column

I am very pleased to announce that the scientific program for ICUC6 has been formalized and is available for review at the conference website (www.gvc.gu.se/icuc6). There is an excellent selection of papers and ICUC6 promises to be a very stimulating event. All those who submitted abstracts should have been contacted by email by the local organizing committee of ICUC6 with information about acceptance or rejection and the format of presentations (oral or poster).

If you submitted an abstract but did not receive that email, please contact me or Professor Sven Lindqvist, Chair of the Local Organizing Committee, as soon as possible. Details of the social events associated with the conference and accommodation that has been reserved for this event also are posted to the web site. Pre-registration starts February 10th and continues until April 10th.

I am also very pleased to announce that following IAUC changes, the Board have elected the next President and Secretary of the organization - both terms commence in 2007. The President-elect is Dr Matthias Roth (NUS, Singapore), the secretary-elect Dr Jennifer Salmond (U. Birmingham, England). I wish them both the very best in their new roles. For the next two years they will serve on the Board as President-elect and Secretary-elect, respectively. The first task Matthias will be taking on will be to issue a call for proposals to host ICUC7.

Sue Grimmond
IAUC President.
Sue.Grimmond@kcl.ac.uk

Newsletter Contributions

The IAUC Newsletter is published bi-monthly. The next publication will occur in early April. Any items to be considered for Issue 16 should be received by **March 31, 2006**.

Rainwater Harvesting

A demonstration building used to illustrate rainwater harvesting techniques in Chennai, India. See p. 3

Comprehensive Outdoor Scale Model Experiment for Urban Climate (COSMO)

A photograph of the 1/5 scaled physical model of an urban area used by the Kanda Laboratory, Tokyo Institute of Technology. A short report on COSMO was published in a previous edition of this Newsletter (6). More details and results are available at the project website:

http://www.cv.titech.ac.jp/~kandalab/COSMO/COSMO.html
Urban Climate News

Newsletter Contributions
The IAUC Newsletter is published bi-monthly. The next publication will occur in early April. Any items to be considered for the December edition should be received by March 31, 2006.

The following individuals compile submissions in various categories. Contributions should be sent to the relevant editor:

News: Dr. J. Marshall Shepherd
 marshall.shepherd@nasa.gov
Conferences: Jamie Voogt
 (javoogt@uwo.ca)
Websites: Gerald Mills
 (gerald.mills@ucd.ie)
Bibliography: Jennifer Salmond
 (j.salmond@bham.ac.uk)
Urban Projects: Sue Grimmond
 (Sue.Grimmond@kcl.ac.uk)

General submissions should be relatively short (1-2 A4 pages of text), written in a manner that is accessible to a wide audience and incorporate figures and photographs where appropriate.

In addition we would be delighted to receive any images that you think may be of interest to the IAUC community.

Contents
p1. President’s Column.
p2. Urban Climate News
p9. Conferences
p11. ICUC-6 Programme at a glance.

We welcome submissions to the “News” section. Submission materials could include but are not limited to: upcoming papers, field experiment information, awards, data or document availability announcements, etc. You may submit your “news item” to Dr. J. Marshall Shepherd (marshgeo@uga.edu)

Please note that Dr. Shepherd has joined the faculty of the University of Georgia Department of Geography (after 12 years at NASA Goddard Space Flight Center), where he continues his research into urban weather and climate processes, particularly precipitation variability.

New York City Heat Island

A thermal satellite image of New York City captured by NASA’s Landsat satellite on August 14, 2002 at 10:30 a.m., shows the locations of the warmest air temperatures as seen in red. The blue indicates areas with cooler air temperatures.

NASA researchers have set out to recommend ways to reduce the urban heat island effect in New York City. They looked at strategies such as promoting light-colored surfaces such as roofs and pavements that reflect sunlight, planting “urban forests” and creating “living roofs” on top of buildings where sturdy vegetation can be planted and thrive. Using a regional climate computer model, the researchers wanted to calculate how these strategies lower the city’s surface and close-to-surface air temperatures and what the consequences of these strategies would be on New York’s energy system, air quality and the health of its residents.

The researchers conducted a city-wide case study over the summer of 2002 to measure changes in air temperatures. They also used six smaller case studies during the same period in places like Lower Manhattan, the Bronx's Fordham section, Brooklyn's Crown Heights section and the Maspeth section of Queens. The areas were chosen for the different ways land is used and their nearness to areas with high electrical use. They also had warmer-than-average near-surface air temperatures called "hot spots" and boasted available spaces to test ways to reduce the urban heat island effect.

(www.nasa.gov/centers/goddard/news/index.html).
Urban Rainwater Harvesting

Rainwater harvesting (RWH) refers to a variety of low-technology means by which rainfall is gathered and usefully employed, often at the scale of the dwelling. In many parts of India, RWH is state policy and is incorporated into building design. The Tamilnadu Water supply and Drainage Board maintains a website (www.aboutrainwaterharvesting.com/) that provides information of RWH practices and outlines the need for RWH:

Till about thirty years back, the areas around our homes and offices used to be unpaved and the rain falling on these areas would percolate into the soil and remain there for being drawn through shallow open wells. With the proliferation of flat complexes, not only have these areas been paved and percolation of rainwater into the soil almost totally stopped, the quantity of water drawn from the soil below has increased many fold. Consequently open wells and not-so-deep bore wells started drying up. The reason is that no sincere attempt is made to replenish the ground watertable with rainwater during the monsoon.

As individuals, groups and communities, let us all wake up before it is too late and not only understand what rainwater harvesting is all about but also implement measures to harvest rainwater in our houses and flat complexes and put it into the soil for our subsequent use.

These practices have been implemented at an urban scale in Chennai City (the state capital), which receives much of its rainfall during North-East Monsoon (October to December, see Figure 1 & Table 1). Metrowater (Chennai’s municipal body responsible for water and sewage) provides a description of Chennai’s rainfall climate and its need for RWH [3]. Although Chennai’s annual precipitation ranges from 1200-1300 mm (compared to an Indian average of 800 mm), much of this is received in short, intense bursts - on average it receives rainfall for 300 hours throughout the year [3].

Table 1. Climate statistics for Chennai [4].

<table>
<thead>
<tr>
<th>Month</th>
<th>Mean Temp. °C</th>
<th>Mean Total Rainfall (mm)</th>
<th>Mean Number of Rainy Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>20.6</td>
<td>28.4</td>
<td>16.2</td>
</tr>
<tr>
<td>Feb</td>
<td>21.2</td>
<td>29.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Mar</td>
<td>23.1</td>
<td>31.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Apr</td>
<td>25.9</td>
<td>33.6</td>
<td>13.6</td>
</tr>
<tr>
<td>May</td>
<td>27.6</td>
<td>36.4</td>
<td>48.9</td>
</tr>
<tr>
<td>Jun</td>
<td>27.2</td>
<td>36.6</td>
<td>53.7</td>
</tr>
<tr>
<td>Jul</td>
<td>25.9</td>
<td>34.7</td>
<td>97.8</td>
</tr>
<tr>
<td>Aug</td>
<td>25.3</td>
<td>33.9</td>
<td>149.7</td>
</tr>
<tr>
<td>Sep</td>
<td>25.3</td>
<td>33.5</td>
<td>109.1</td>
</tr>
<tr>
<td>Oct</td>
<td>24.3</td>
<td>31.4</td>
<td>282.7</td>
</tr>
<tr>
<td>Nov</td>
<td>22.8</td>
<td>29.2</td>
<td>350.3</td>
</tr>
<tr>
<td>Dec</td>
<td>21.6</td>
<td>28.1</td>
<td>138.2</td>
</tr>
</tbody>
</table>

Figure 1. Annual rainfall in India (CNN refers to Chennia). [4]

Figure 2.

(a) A demonstration building used to illustrate RWH techniques.
(b) A RWH system in place which collects water gathered on the roof surface.
These characteristics require that rainwater be stored, ideally for direct use but also to recharge underlying ground water (Figures 3&4). In the absence of such measures, flooding and water loss occurs during the rainy season and water scarcity occurs during summer months. This is exacerbated where land-cover changes associated with rapid urbanisation impedes the groundwater recharge.

RWH is a means of ensuring that rainfall resources are fully utilised. To illustrate, Metrowater provide examples of the water potential. For example, assuming 60% of the annual average rain falling on a terraced surface of area 100 m² can be gathered, this would provide 78,000 litres of water.

To encourage the adoption of RWH, Metrowater has created a Rainwater Harvesting Cell, a unit that provides awareness on RWH and offers free technical assistance and cost effective solutions to Chennai residents (Figure 2). In addition, RWH is being incorporated into the regulations for new buildings. The project has achieved considerable success. As of the end of December 2005, over 300,000 buildings in Chennai have RWH (Table 2).

Sources:
1. Tamilnadu Water supply and Drainage Board (www.aboutrainwaterharvesting.com/)
2. www.rainwaterharvesting.org
3. Chennai Water Supply and Sewerage Board. (www.chennaimetrowater.com/)
4. India Meteorological Department (www.imd.ernet.in/)
Need for eco-friendly buildings
Jayalakshmi K.

Gleaming in their sporty glass facades, Bangalore’s high-rise buildings boast of a city that has arrived. Take a second look at the buildings and you will realise they all look alike. In fact, they even resemble their counterparts in Boston or London. It is almost as if the architects are merely copying from some design book. Unfortunately, it is the wrong book.

In a rush to give the city a global look, builders are piling up large quantities of high energy steel and aluminium. Says Chandrashekar Hariharan, director, Biodiversity Conservation India Ltd (BCIL), “It is all about what adds on to your building value, whether you use glass, aluminium or steel. Glass is being used liberally as it takes less time to put up a building, is easy to build and is sold as a lasting material that needs no painting etc, over time. Nobody realises what a high energy material glass is. You just need to stand outside one of those buildings in Koramangala or Bannerghatta road and you can feel the blast of heat. But who cares?”

Concrete and glass help retain heat inside the building, adding on to the cooling load of air conditioners. The more of the sun’s heat you let in, the more overtime your AC has to work and the more heat it spits out into the outside environment. This is one of the main causes of islands of urban heat around the cities of the world.

A plush office is not always a healthy office. Shilpa, who works in one of the steel and glass monoliths in the city knows that. Like many who work in air-conditioned workplaces, she has noticed that the cold bug seems to stay on and on! Blame it on the AC. “Did you know that the air conditioners we have, work with a mere eight percent fresh air while the rest is the same stale air circulated over and over again?” asks Hariharan.

At any given point in time, air quality inside the average air-conditioned building is 2-5 times worse than the air outside and most of us spend 90 percent of our time indoors.

The other issue around ACs is the undesirable degree of cooling that most offices resort to. Instead of 23-26 degrees, what is usually experienced is a cold 17-18 degrees. All this finally means more power consumed. More power consumed means more coal burnt. In India, over 50 percent of power requirements are met through coal and will be for quite some time to come. Coal is one of the most prolific emitters of greenhouse gases.

So is anyone asking for a return to the dark ages? Not at all! Much can be done without sacrificing personal comfort. In fact, the gains are not only in terms of energy savings but also in terms of overall health and employee performance….. Here in Bangalore, we have a few work areas that have adopted the ‘green building’ concept. “You simply need to stop using technology blindly. How did our ancestors live? Did they live without comfort? We studied ancient architecture as also some of our palaces and buildings to seek alternative ways of providing fresh air and sunlight. We do not use a single AC in our office.”

The initial cost in creating a ‘green building’ is a bit high but, operating cost drops drastically and makes up for the high cost incurred at the beginning, in just a couple of years. Green buildings increases the occupant’s performance by 6-26 percent and reduces respiratory diseases by 9-20 percent, according to a CII study. A perfect solution for both the employer and the employee.
Urban Climate News

Urban skywalk concept brought down to earth

Sunlight is replacing the shadows where elevated walkways spanning streets around Cincinnati’s downtown square have been torn down. Similar open spaces are appearing in other cities where planners once hoped skywalks would energize their downtowns.

“More cities are realizing that skywalks are not what they were cut out to be,” said Fred Kent, president of Project for Public Spaces, a New York City-based nonprofit organization that helps communities create and sustain public places. “Instead of drawing additional people and retail to a second level, skywalks have left streets lifeless, presenting a cold and alienating environment.”

While skywalks remain popular in some cold-weather cities such as Des Moines, an increasing number of cities have started tearing down some of theirs or would like to remove them. Planners and others in cities such as Cincinnati; Baltimore; Charlotte, N.C.; Hartford; and Kansas City, Mo.; now believe that increasing street-level pedestrian traffic will lead to more downtown homes, shops, and entertainment.

Skywalks vary from enclosed, climate-controlled corridors with windows to open bridges with and without roofs. The pedestrian walkways connect second stories of buildings and often are part of large networks that wind through downtown, with shops and services located in sections that pass through buildings.

Planners estimate that between 20 and 30 cities across the United States at one time embraced the design concept. The mostly glass-and-steel skywalks that were constructed beginning in the 1960s and 70s were intended to insulate pedestrians from weather and street crime and to compete with suburban malls.

Hurricane Katrina

There are a great number of resources on Hurricane Katrina and its impact on New Orleans, particularly. A data clearinghouse on this topic is available at the Louisiana Geographic Information Center (http://lagic.lsu.edu/hurricanes.htm). Included among the materials is an electronic atlas that provides detailed maps of the path and impact of the storm.

A four part lecture series on ‘Assessing Katrina: Ecosystems, Urbanization and the Real Costs of Reclamation’ is being held in Stanford School of Earth Sciences.

Two lectures remain:

- “Rebuild or Abandon?” Monday, Feb. 27, chaired by Barton “Buzz” Thompson, co-director of the Stanford Institute for the Environment.
- “Dealing with Disasters,” Monday, March 6, chaired by Pamela Matson, dean of the School of Earth Sciences.

The lecture series is sponsored by the School of Earth Sciences, the Stanford Institute for the Environment, the Freeman Spogli Institute and Stanford Continuing Studies. For online maps and directions, visit http://pangea.stanford.edu/outreach/about/maps.html.
As part of the MCMA-2003 field campaign in Mexico City, we deployed an eddy covariance (EC) flux system on a tall tower (37 m) at the CE-NICA super site (see Fig. 1) to perform direct measurements of fluxes of CO$_2$ and selected volatile organic compounds (VOCs) from sources in an urban neighborhood (Velasco et al., 2005a; 2005b). We employed a chemiluminescent isoprene analyzer (Guenther and Hills, 1998) calibrated to measure fluxes of olefins (Fast Olefin Sensor, FOS) with the EC technique, a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) to measure fluxes of acetone, methanol, toluene and C$_2$-benzenes using the disjunct eddy covariance method (DEC), and an open path infrared gas analyzer (IRGA) to measure fluxes of CO$_2$ by EC. Flux measurements were collected during April 2003, with the main goal of demonstrate the feasibility of making eddy flux measurements of trace gases, in particular of VOCs in an urban environment, where the spatial variability of emission sources, surface cover and roughness is very complex.

The flux data were evaluated to confirm that the measured fluxes met stationary conditions and comprised turbulent signals at sufficiently high and low frequencies in the unstable surface layer. The footprint of the measured flux was also evaluated using a hybrid model based upon Lagrangian stochastic simulations and similarity theory (Hsieh et al., 2000). The results indicated that the footprint was large enough to characterize fluxes from a typical neighborhood and fluxes were representative of emissions at a scale that is quite useful for the evaluation of urban emission inventories. With this in mind, we examined the Mexican VOCs emissions inventory for the neighborhood around the flux measurement site. Figure 2 shows good agreement between the diurnal profiles for measured and calculated olefin fluxes. The measured flux of olefins was slightly higher than predicted by the emissions inventory during early morning hours, but during the rest of the day, the inventoried olefinic emissions exceed the measured fluxes by no more than 30%. Note that the diurnal profile of measured olefin fluxes (Figure 2) remained positive, which indicates that the urban surface is always a net source of olefins. The highest fluxes were recorded after sunrise, between 6:30 and 8 am coinciding with rush hour traffic, and the lowest fluxes were observed during late night and early morning. Overall, fluxes of CO$_2$ and VOCs showed similar diurnal patterns and were strongly correlated to vehicular traffic.

In summary, the flux measurements obtained during MCMA-2003 demonstrated the use of EC and DEC techniques to perform VOC flux measurements in an urban area using state of the art VOC sensors. The capability to evaluate emission inventories using these techniques, as we have described in this work, is a valuable new tool for improving air quality management. However, flux measurements in other locations from the city, including a larger number of VOC species, are required to confirm the representiveness of the 2003 flux measurements in terms of the magnitude, composition, and overall distribution of urban emissions.
With that goal in mind, VOC flux measurements will be collected from a new site in Mexico City during March 2006 as part of the MILAGRO campaign. We will extend the list of VOC compounds measured by increasing the number of aromatic and oxygenated species analyzed by the PTR-MS, and by using a disjunct eddy accumulation (DEA) system coupled with VOC gas chromatography / flame ionization detection (GC-FID). We also plan to measure CO$_2$ fluxes using IRGA and CO fluxes using spectroscopic techniques. Since VOCs, CO and CO$_2$ in urban environments are strongly related to combustion sources, it will be very useful to compare ratios of fluxes among these different species as well as to compare the absolute magnitudes of the fluxes. Lastly, we will attempt to measure fluxes of primary aerosol (organics, sulfate and nitrate) using an Aerodyne Aerosol Mass Spectrometer (AMS).

This work will be conducted by Washington State University (WSU) in collaboration with the Molina Center for Energy and Environment (MCE2), the Pacific Northwest National Laboratory (PNNL) and the local air quality monitoring agency (SIMAT). Results will be important for modeling analyses of the MILAGRO field campaign and for future air quality management within Mexico City and other megacities.

Erik Velasco2, Shelley Pressley1, Brian Lamb1, Hal Westberg1, Eugene Allwine1, Tom Jobson1, Michael Alexander3, Luisa Molina2, Mario Molina2

1. Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington, USA
3. Battelle Pacific Northwest Nacional Laboratory, Richland Washington, USA

References

Conferences

"Urban Remote Sensing: Challenges & Solutions",
2-3 March 2006,
Berlin-Adlershof, Germany

This is the First Workshop of the EARSeL Special Interest Group on Urban Remote Sensing.

contact: Prof. Dr. Patrick Hostert,
patrick.hostert@geo.hu-berlin.de

Living with Climate Variability and Change:
Understanding the Uncertainties and Managing the Risks
Espoo, Finland July 17-21, 2006.

The conference is being jointly sponsored by the Finnish Meteorological Service, the World Meteorological Organization, and the IRI. With a focus clearly on the management of climate related risks and opportunities, we believe this forum will provide a chance to review the progress, obstacles and future prospects for effective policy and practice in critical sectors such as agriculture, water resources, public health, and disasters. Attendance will include experts and practitioners in all of these areas. Please consider attending.

A conference website has been established at: www.livingwithclimate.fi. There you can also view and/or download the first announcement.

Joint Assembly
23 – 26 May 2006

Special Session (H04) on
Aerosols, Pollution, and Urbanization Effects on Precipitation

This special session will cover a range of topics related to how precipitation is affected by changes in the atmosphere and land surface properties due to anthropogenic pollution, fires, dust storms, and urban growth. Contributions are equally sought from both the research and operational communities to facilitate discussion and exchange of experience. Papers are solicited on observational and modeling studies in such areas as the microphysical impact of aerosols and pollution on precipitation processes, observed changes in precipitation characteristics and patterns with aerosol concentrations and land use, and modeling efforts related to these areas.

(www.agu.org)

Conveners:
Thomas Bell, NASA/Goddard Space Flight Center, Mail Code 913, Greenbelt, Maryland 20771, USA. Phone.: 301/614-6197; E-mail: Thomas.L.Bell@nasa.gov

J. Marshall Shepherd, Associate Professor and Physical Meteorologist/Climatologist, The University of Georgia, Department of Geography, Athens, Georgia 30602-2502. Phone: (706) 542-0517; Email: marshgeo@uga.edu

International Conference on Infrastructure Development and the Environment

The conference will bring together policymakers, scientists, engineers, corporate leaders, students and others to analyze approaches, form alliances and share experience on cross-disciplinary issues related to sustainable development. Judging from previous conferences that have been held in the United States, Brazil, China, Korea, Japan, and Finland, you are likely to find this event enjoyable and satisfactory. Participation in this conference series has opened new horizons for many professionals.

Website: www.iseg.giees.uncc.edu/abuja2006/

Urban Data Management Meeting
UDMS 2006

May 15-17, 2006,
AALBORG, DENMARK

www.udms.net

FIRST ANNOUNCEMENT & CALL FOR PAPERS

UDMS, the Urban Data Management Society, has organised international symposia at various locations in Europe in order to promote the development of information systems in local government since 1971.
ICUC-6
Sixth International Conference on Urban Climate
Göteborg, Sweden
June 12th - 16th, 2006
www.gvc.gu.se/icuc6,

Registration starts:
10th of February 2006
Registration and submission of preprint:
10th of April 2006

ICUC-7
We would like to start the process to identify the location and host of the next ICUC meeting which will probably be held in 2009. Those interested in hosting the next conference need to prepare a proposal. The proposal must address the following points:
1. Organizer's name and institutional affiliation
2. Location for conference, facilities available (conference, hotels)
3. Proposed timing of conference
4. Proposed registration or other fees for conference, and an indication of how surpluses or deficits are to be handled.
5. Whether there will be a preprint volume or conference proceedings (printed or on CD-ROM).
6. Institutional/private/government support for holding the conference at this location. This might include suggestions for a joint conference with another society or organization.

Previous organizers of ICUC conferences are:
Professor Y. Nakamura, Japan
(ynaka@pu-kumamoto.ac.jp)
Professor W. Kuttler, University of Essen, Germany
(wilhelm.kuttler@uni-due.de)
Dr Richard DeDear, Macquarie University, Australia
(rdedear@laurel.ocs.mq.edu.au)
Professor K. Klysik, University of Lodz, Poland
klysik@krysia.uni.lodz.pl (ICUC-5)
Professor S. Lindqvist, Göteborg University, Sweden
(sven@gvc.gu.se) (ICUC-6)

These people can provide insight into the necessary financial and institutional support that is needed to run a successful conference. It must be appreciated that ICUC of itself has no funds, its main resource is the enthusiasm of its members the knowledge that designated ICUC meetings attract the best of the international urban climate community, and that our past success has created mutually beneficial interorganizational linkages.

Proposals should be submitted in electronic format to Dr. Matthias Roth (geomr@nus.edu.sg) by 10 April 2006. We will have initial evaluations with the Board of the IAUC and then ask finalists to prepare a presentation for the Board Meeting at ICUC-6. If you have any queries or would like to see what a full previous proposal looked like please contact Matthias Roth.

Topics include:
a. Application of cool materials in urban regions
b. Performance characteristics of existing and emerging urban materials
c. Materials case studies
d. Material optimization models and life cycle costing
e. National and international financing of urban infrastructure projects
f. Regulatory program considerations and incentives
g. Outreach and education opportunities

In addition, we will also be providing attendees with a tour of the new Interdisciplinary Science and Technology Building II (the new home of the National Center of Excellence SMART Materials laboratories) and a tour of the 3-D 270 degree Decision Theater (one of only two in the United States).

Registration and exhibitor information can be found at www.asusmart.org/smart/coolpavements/conference.jsp. This one day conference will be in conjunction with the two-day conference on “Pavements/Materials Today and Tomorrow” also hosted by ASU on April 25 and 26, 2006.
<table>
<thead>
<tr>
<th>Time</th>
<th>11 June Sunday</th>
<th>12 June Monday</th>
<th>13 June Tuesday</th>
<th>14 June Wednesday</th>
<th>15 June Thursday</th>
<th>16 June Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>REGISTRATION</td>
<td>PLENARY</td>
<td>C2 SESSION</td>
<td>E1 SESSION</td>
<td>E2 SESSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPENING TALKS</td>
<td></td>
<td>C1 SESSION</td>
<td>CLIMATE PERFORMANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLENARY</td>
<td></td>
<td>CLIMATE PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td></td>
<td></td>
<td>CLIMATE PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td>CLIMATE PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td>CLIMATE PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td>CLIMATE PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>PRE REGISTRATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at the Conference Centre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallenberg of Göteborg University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>Welcome Reception at City Hall Börsen</td>
<td>Reception at Earth Science Center</td>
<td>Boltlrip/Archipelago Tour</td>
<td>Conference Dinner at Universeum Science Centre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This has been a great year for urban climate publications. We have seen a wide range of interesting papers spanning the breadth of the subject from cities around the world. Thanks to everyone who has collected and sent in references. Look out for the complete 2003 and 2004 bibliographies on the IAUC website in the near future!

Please send any further papers published since January 1 2004 for inclusion in the next newsletter to j.salmond@bham.ac.uk. As before, please mark the header of your email with 'IAUC Publications 2006'. In order to facilitate entering the information into the data base please use the following format:

Author:
Title:
Journal:
Volume:
Pages:
Dates:
Keywords:
Language:

We look forward to hearing from you soon!
Heather Thompson, on behalf of
Jennifer Salmond
University of Birmingham
j.salmond@bham.ac.uk

Recent publications in Urban Climatology

(Languages are specified where the publication is known to be in a language other than in English.)

The Landsberg Award

"The American Meteorological Society's Helmut E. Landsberg Award is a new award that has just been established to recognize contributions to increased understanding of the urban environment. With this new award, the AMS supports the growing recognition of the importance of meteorology, climatology, and hydrology in urban areas, and the associated impacts on urban societies and on the general atmospheric environment. This Award will recognize an individual for exemplary contributions to the fields of urban meteorology, climatology, or hydrology, including, but not restricted to, achievements through measurements or modeling that provide an improved understanding of atmospheric processes in urban environments, enhanced urban meteorological or air quality forecasting capabilities, advances in identifying and quantifying beneficial and adverse impacts in urban areas, or in recognition of service or applications in the field. Contributions may either be for a singular achievement or in recognition of sustained contributions over a period of many years. The inaugural award will be presented at the AMS 2007 Annual Meeting.

Nominations for this Award are open to the international community. You are invited to submit a documentation package for your nomination; the package should consists of the following: A nomination letter not to exceed three pages including the
(a) name of the Award,
(b) description of the nominee’s major accomplishments and contribution,
(c) a two page CV (and if appropriate, a bibliography of no more than three pages,
(d) up to three letters of recommendation of not more than two pages each, and
(e) a proposed citation of no more than 30 words that highlights the major accomplishments of the nominee.

The deadline for nomination packages is 1 May and should be sent to the Chair, Awards Oversight Committee, American Meteorological Society, 45 Beacon Street, Boston Massachusetts 02108. (To avoid disappointment in the event of failure of selection, the nominee should not be informed that she/he is being nominated.)"

IAUC Nominations Board

The IAUC is to create a Nomination Board, with the responsibility of this group will be to solicit and encourage nominations for positions within the IAUC, for Awards etc. Such a committee exists in many organizations. One of the first tasks of the committee, with the Board, will be to draft a statement of responsibilities. Ideally this will just be a small group, I will suggest three people with wide geographic representation and composed of urban climatologists who are active participants in the community and responsive to requests made of them. If you would like to stand for this committee, and/or have people you would like to nominate (I will happily contact them), please email me by March 1, 2006. If any who have not expressed comments to date on this idea, or if you have further comments, I encourage you to share them with the full Board.

Sue Grimmond
IAUC President.
Sue.Grimmond@kcl.ac.uk

Board Information

Board Members & Terms

President: Sue Grimmond (USA), 2007
Secretary: Matthias Roth (Singapore), 2007
Janet Barlow (UK), 2007
Arieh Bitan (Israel), 2006
Jennifer Salmond (UK), 2009
Krzysztof Fortuniak (Poland), 2007
Wilhelm Kuttler (Germany), 2008
Gerald Mills (Ireland), 2007
Manabu Kanda (Japan), 2009
James Voogt (Canada), 2006

Non-Voting members of the Board:
Past Secretary: John Arnfield, USA.
Past President: Tim Oke, Canada.
Local Organizer ICUC5: Kazimierz Klysik Poland.
Local Organizer ICUC6: Sven Lindqvist, Sweden.

IAUC Committee Chairs

Editor IAUC Newsletter: Gerald Mills
Chair Bibliography Committee: Jennifer Salmond
Chair Membership Committee: Janet Barlow
Chair Teaching Resources: Gerald Mills
Chair Awards Committee: Bob Bornstein
WebMasters: James Voogt